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Abstract

A new technique for the estimation of autoregressive filter parameters of a non-
Gaussian autoregressive process is proposed. The probability density function of
the driving noise is assumed to be known. The new technique is a two-stage pro-
cedure motivated by maximum likelihood estimation. It is computationally much
simpler than the maximum likelihood estimator and does not suffer from conver-
gence problems. Computer simulations indicate that unlike the least squares or
linear prediction estimators, the proposed estimator is nearly efficient, even for
moderately sized data records. By a slight modification the proposed estimator

can also be used in the case when the parameters of the driving noise probability
density function are not known.



1. Introduction

Estimation of the parameters of autoregressive (AR) processes has been widely
addressed [Box and Jenkins 1970], [Kay 1986]. These processes are modeled by an
all-pole filter excited by a white Gaussian process, also referred to as the driving noise.
The class of AR processes driven by white non-Gaussian noise has not received much
attention, although they are capable of representing a wide range of physical processes
[Sengupta and Kay 1986]. Previous research has shown that it may be possible to esti-
mate some of the parameters characterizing a non-Gaussian AR process more precisely
than those of a Gaussian AR process with the same power spectral density (PSD).
Specifically, the Cramer-Rao bound (CR bound) for the variances of the estimators for
the AR filter parameters [Martin 1982] is lower in the non-Gaussian case than in the
Gaussian case [Pakula 1986], [Sengupta 1986). Yet utilization of this theoretical result
has been limited. The method of maximum likelihood, which is the most widely consid-
ered approach for AR parameter estimation, is usually associated with computational .
complexity and convergence problems. In the case of non-Gaussian PDF’s maximiza-
tion of the likelihood function leads to a set of highly non-linear equations [Sengupta
and Kay 1986] in contrast to the Gaussian case where the equations become linear
after a few simplifying assumptions. It is the solution of these non-linear equations
which results in the computational complexity of the maximum likelihood estimator
(MLE). Iterative techniques which are often used to solve these equations suffer from

convergence problems for short data records.

Several non-Gaussian PDF’s have been proposed to model the driving noise. Zero-
mean symmetric PDF’s having tails heavier than the Gaussian tail are of particular
interest because they may model a nominally Gaussian background with occasional im-
pulses. Such noise processes are encountered in low-frequency atmospheric communica-
tions [Bernstein 1974}, sonar and radar problems and so on. Examples of heavy-tailed

PDF’s are the mixed-Gaussian PDF, the Johnson family and Middleton’s class A and
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B PDF families. All of them lead to a complicated likelihood function which is difficult
to maximize.

This paper suggests a method to estimate the AR filter parameters of a non-
Gaussian process in a computationally simple'\'avay. Essentially it is a two-stage proce- .
dure based on an approximation of the MLE. The resulting estimator is asymptotically
efficient in the sense that its variance approaches the CR bound for large data records.
The mixed-Gaussian PDF is used to illustrate the approach and to demonstrate some
of the finer aspects.

The paper is organized as follows. Section II gives an interpretation of the MLE
which forms the basis for the development of the new estimator. Several special cases
are discussed to illustrate the central argument. Section III suggests an approximation
to the MLE based on this interpretation. Section IV actually implements such an
estimator for the case of a mixed-Gaussian distribution. Section V discusses the case
when some of the parameters of the noise PDF are unknown while section VI reports

the results of computer simulations. Section VII summarizes the main results.

II. An Interpretation of the MLE

Consider N observations of an AR(p) process

P
Tn=—) GjTn_j+tn, n=12,--N (1)
7=1
where the driving noise u, has the PDF f (4n; ©) dependent on the parameter vector

©. f is assumed to be an even function and hence zero mean. It is also assumed that f
has tails heavier than a Gaussian PDF g having equal variance, t.e., there is a number

U such that

fun) >g(un)  for jus|>U (2)
subject to the constraint
+o0 +00
uZ f(un)dun, =/ u2 g(un)dun
—00 —00
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The log likelihood function for the AR filter parameters is given by the joint PDF
of {z1,Z2, - +,zn} when the z,’s are replaced by their observed values. This is difficult
to evaluate. It is a common practice to replace the exact likelihood function by the
conditional liklihood of {zp41,Zp42,---,zn} given {z1,z3,---, zp} for the purpose of
maximization over the parameters. It can be easily shown [Box and Jenkins 1970] that

the conditional log likelihood function is given by

N

Inf = Z In f(un; ©)

n=p+1

un=Z:’=0 QiTp—i (3)

where ao = 1. Differentiating with respect to a;

E Y9 O
A—Inf = _ZTlnf(um@)'ga—

da; it Ou, i un=2§’ .
N
- Z . ['(un; ©)
= "y :
n=p+1 f(um @) u,‘=§:.P 0 ®iTn—i
N
['(un; ©

I
™
3
d
5

———

‘
ATy
+=0 Tt n—3

n=p+1 nf(um 9)
N
= - a:,,_,-u,,r(u,,) (4)
n=zp;{-1 Un=) F_ aiTa;

where

The MLE of a =[a; a2 :+- a,] is found by solving

N

E Zn—jtunl(un)

n=p+1

=0’ j=1s2a"'p (6)

Un=) P GiTa—i
provided © is either known or replaced by its MLE © in order to calculate I'(up) from

(5)- From this point onwards © will be assumed to be known. It will be shown in

section V that for some PDF’s the method to be described can be implemented with
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O replaced by a reasonable estimate. Note that since f is assumed to be a symmetric
PDF, f’ is an odd function of u,. Therefore f’/u,, is even in u, and I'(uy) given by

(5) is an even function. I'(u,) is assumed to exist over the domain of f (r;©). (6) can

also be written as

Zat Z xn—izn—JF(un) =0, J=12,--:p (7)
1= n=p+1 un=zr 0 % Tn—i
For the special case of a Gaussian PDF with variance o2, f’ /f = —un/o?. There-

fore I'(un) = 1/0? and (7) reduces to

p N
D% D Tai%asj =0, j=12,---p (8)
1=0 n=p+1

which can be recognized as the covariance method of linear prediction, known to be
approximately the MLE in the Gaussian case. It is the solution of a linear least squares

(LS) problem [Box and Jenkins 1970}, [Kay 1986]
m1n Z (z,. + Za, :z:,.-,) (9)
n=p+1
(7) resembles the solution of a LS problem except for the weighting factors I'(un). Note
that the inherent dependence of u, (and hence I'(u,)) on a, the AR filter parameters,
makes it a non-linear problem. If, however, the argument of T is calculated using a fized

(and hopefully an approximate) value of a, (7) becomes the solution of the following

wesghted LS problem

min E (:z:,, Ea,:cn_,) T (@) (10)
n=p+1
in, a quantity expected to be close to uy is defined by (1)

p
E& zn—J, n=p+1,p+2,"'N (11)
J=0
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where some fixed approximate values of the AR filter parameters are used. dg is defined
to be unity. (10) is minimized by (7) with I'(u,) replaced by I'(4,) which reduces
to a set of linear equations whose unique solution can be expected to be close to
the MLE of a. The resulting estimator should be much better than the unweighted
LS estimator (resulting from (9)) because it retains the general shape of I'(u,) by
approximating it with I'(@,). The sequence {i, l p+1 < n < N} can be generated
by passing {Zp41,Zp+2,---,zn} through a moving average (MA) filter as per (11)
with coefficients obtained from a preliminary stage of least squares estimation (e.g., by
covariance method). In other words, @i, becomes an estimate of the nth sample of the
driving noise based on an LS estimate of the filter parameters such as the covariance

method. This approach leads to an appraximate MLE which is described in the next

section.

It is of interest to know how the terms of (10) are actually weighted. Three sym-
metric PDF’s which are commonly used to model heavy-tailed non-Gaussian processes
[Czarnecki and Thomas 1982], [Middleton 1977], [Johnson and Kotz 1971] are now con-

sidered. The plots of the weighting function I'(u) for these PDF’s provide insight into
the structure of the MLE.

Mixed-Gaussian Model: The mixed-Gaussian PDF has received considerable atten-
tion in situations where the underlying random process is characterized by the presence

of occasional impulses in an otherwise Gaussian process. The PDF is given by
f(u) = (1 - €)Ep(v) + €Er(u), 0<e<1 (12) -

~ where Ep and E are Gaussian PDF’s with parameters [up,0%] and [ur,0%], respec-
tively. Assuming 0% << o?, the fraction € can be thought of as the degree of con-
tamination of the low-variance Gaussian process with PDF Ejpg by the high-variance

component with PDF Ey. Only the zero-mean case (up = 0,7 = 0) will be considered

6



here. (12) is explicitly written as

2 2
flu) = 1—ce¢ —#‘5+ € v

13
\/27raf36 \/27rofe ! (13)

For this PDF I'(u) can be shown to be
2 2
L) A ()
L on py/21p
2 — 2 2
o5 1-€4(%) L _¢ %()
V2w 27p

_323 € _a3

I'(u) =

[y
|
m

1
;2; i (14)

V2r

where p = 0} /0% and @ = u/op. Figure 1(a) plots I'(x)/T(0) vs. @ (= u normalized

'S

2 € -2
e T + e %

by op) for p = 100. Curves for different values of ¢ are overlayed. Figure 1(b) plots
I'(u)/T(0) vs. 4 for € = 0.1 and different values of p. The curves show that I'(u) acts -
as a limiter. The squared errors in (10) with large values of #, are suppressed. This
makes intuitive sense because large values of u, (spikes at the input of the AR filter)
would otherwise dominate the sum of the squares and consequently the information
contained in the rest of the terms will be lost. Quantitatively, from (14) with p >> 1,
'(0) ~ 1/0% and I'(u) — 1/0} as u — oo, i.e., very small and very large terms in (10)
are scaled in the inverse ratio of background and interference noise powers, respectively.
This is in accordance with analogous results in optimal weighted least squares theory
[Sorenson 1980).

Middleton’s Class A Model: Another physically motivated model to represent
nominally Gaussian noise with an impulsive component is Middleton’s class A PDF
given by the infinite sum

Sy = ety AEmls) (15

where 0 < 4 <1 and Ey,(u) is a zero-mean Gaussian PDF with variance o2, given by

o2 = 2MA+B

6
m 1+B (16)



with B a constant. The Gaussian component corresponding to m = 0 has the least
variance and can be thought of as the background process. The weights of the higher
order terms can be controlled by the constant A. A small value of A will diminish the
contribution of the contaminating high-order .f;erms. The constant B can be used to

adjust the variance of these components. The overall variance of the Middleton’s class

A PDF is o2. T'(u) can be written in this case as

o o ml = ohm!

) = = o e ()
2, B X o A
m=0 m=0

Figures 2(a) and 2(b) plot I'(x)/T'(0) vs. u for this PDF for different values of 4 and
B. 0? is assumed to be unity. These curves also are observed to be similar to a limiter
curve. A larger value of A implies an increased presence of high-variance components.
Therefore a smaller threshold is necessary above which the squared terms of (10) need
to be down-weighted in order to preserve the information in the remaining terms. This
is reflected in‘Figure 2(a) which clearly exhibits a smaller threshold for a higher A.
Also, a larger value of B implies less difference in the variances of the Gaussian terms
corresponding to m = 0 and m > 0, f.e., a smaller deviation from Gaussianity. A
smaller value of B indicates more non-Gaussianity and hence a smaller threshold is
necessary, which is confirmed by Figure 2(b).

Johnson Family: The Johnson family of PDF’s is one of the heavy-tailed families
obtained by applying a transformation to a Gaussian random variable. If v is a Gaus-

sian random variable with mean zero and variance one, then the transformed random

u=tsinh<-z->

has a PDF belonging to the Johnson family given by

-~} o 2
f(u)=2%[¥;+1] e~ (6simn7! (1) (18)

variable
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t is chosen to be

so that the density has a variance 02. The parameter t can be used to control the
heaviness of tail. A smaller value of ¢ implies a heavier tail. The PDF approaches a
Gaussian one as § — o0. I'(u) can be written in this case as

T(u) = tlz [1 + ’t‘—:} 1 + [1 + ':—22] %-i—zsirﬂl‘l (%) (19)
Figure 3 plots I'(u)/T'(u) vs. u/o for different values of ¢t. A larger value of ¢ indicates
less deviation from Gaussianity confirmed by a gradual decrease of the curve from the
value at u = 0. Smaller values of ¢ correspond to a sharper transition and a smaller
threshold.

All these illustrations show that the MLE given as a solution of (7) actually
downweights the larger squared terms and may therefore be well appraximated by
an appropriate weighted LS wtim‘ator. The following section elaborates on this point.
It should also be noted that I'(u) is positive in all the above cases. This is true for any -
symmetric PDF which is a monotonically decreasing function of u for positive values

of u, as may be verified from (5). Most of the common PDF’s have this property.

II. An approximation to the MLE

It was suggested in the previous section that the problem of solving the set of
highly non-linear equations (7) can be replaced by solving a set of linear equations if
the weighting function I'(u,,) is known or can be estimated for each n. Specifically, this
suggests a two-stage procedure. The first stage involves computation of the unweighted
LS estimates of the unknown filter parameters. These crude estimates can be used to
estimate u, as per (11) and hence I'(u,) required for the second stage of weighted LS

estimation. This procedure would eliminate convergence problems and much of the
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computational complexity associated with the MLE. Yet it is apparent from (14), (17)
and (19) that even if u, were known computation of the weighting function might be
difficult for many heavy-tailed non-Gaussian PDF’s. Typically the weighting function
involves computation of transcendental functions such as exponentials which may be
computationally burdensome. The problem would‘be simplified considerably if T’ could
be approximated by a simple function whose characteristics depended on the PDF

parameters. A possible approximation of the weighting curves shown in Figures 1-3 is

the Butterworth “filter”

fiu) = % e (20)
1+ =
[

where u. denotes the ‘3 dB cutoff’, 8 is the order of approximation (not necessarily
an integer) and K; > 0 and K7 > 0 can be used to match " with T for ¥ = 0 and
% — 0o. All these parameters can be used to produce an accurate approximation of
the usually complicated function I'. The second stage of LS can therefore be simplified
by minimizing (10) with T replaced by I'. This yields

p N N
Zcu( > zn-izn—jr(ﬁn)) == Y Zatni[(@a), J=1,2,---p
1=1 n=p+1 n=p+1

which in matrix form is
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x: y
Z zn-—lzn—lr(an) Z In—lzn—Zr(an)
n=p+1 n=p+1
~ N ~
Z zn—2$n—1r(an) Z zn—2xn—2r(an)
n=p+1 n=p+1
N . N .
xn—pzn—-lr(ﬁn) Z xn—pzn—:!r(ﬁn)

\\ n=p+1 n=p+1

4 2oy )
Z Tn—-1Zn—pl'(dn) ay

n=p+1 \

A ™ a
Z zn—-2xn—pr(an) 2

n=p+1

f: xn_,;xn_pf‘(an) kapJ

n=p+1

X

( EN: :c,,z,._lf‘(ﬁn)\

n=p+1

Z :z:n:cn_gf‘(ﬁ.,.)

n=p+1

TnZn—pl(in)
\ )

n=p+1
(21)

X is a symmetric p x p matrix which is positive semidefinite. To show this assume

b =[b; bz -+ by] is a vector of real numbers. Then,

P p N
bTXb = Ezbzbg E zn—izn—jf‘(an)

[

n=p+1

"[\’]z w'a'[\’]z

’-jl

n

zo

f‘ un)EZb 0 Tn_iTn—;

i=1j5=1

ofge]

since the weights I'(&,) are always positive (see (20)). (21) can be solved in O(p®)

operations. A Cholesky decomposition can be used to reduce computation. This is

in contrast to the unweighted least squares, for which it is possible to estimate the
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parameters in O(p?) operations [Morf et al 1977]. In summary, the proposed technique
is
STEP I : Use covariance method ((21) with ['(4,) = 1) to obtain initial estimates
of a.
STEP II : Generate the sequence i, by passing {Zp41,Zp42," - »Zn} through the
MA filter whose coefficients are as estimated in step I, as given by (11).
STEP III : Select the curve T (20) by choosing appropriate values of uc, B, K, and
K3 from the known values of the PDF parameters (©).
STEP IV : Solve for a from (21).
Step II will be different for different non-Gaussian PDF’s. The following section

addresses this part of the problem for the specific case of a mixed-Gaussian distribution. -

IV. Weighted LS for Mixed-Gaussian PDF

Performance of the weighted LS estimator described in the previous section is
expected to be dependent on how well the curve I’ can approximate the true weighting
curve I'. Therefore the parameters of f‘, namely, u., 8, K; and K, should be chosen
properly for every set of values of the parameters of the PDF, i.e., ©. In the mixed-
Gaussian case the parameters € and p determine the shape of T' (see Figures 1(a) and
1(b)). K and K3 can be found as a function of these two parameters by matching the

values of I' and I' for u = 0 and u — oo. It follows from (14) assuming 0% =1 that

1-¢+—
=" a4 re)
ro) = 2/ I(oo) - 1

\/;_)
Also, T'(0) = K; + K and I'(00) — K. Therefore




Fortunately, K and K are obtained as explicit closed-form functions of € and p. 0%
has been assumed to be unity without loss of generality, since it will only change u. by
a scale factor and furthermore the weighting curve need only be determined to within
a scale factor for use in (21). u. can be chosen to match I' and I at u = u,. It is found
by solving

Tlu) = 21 + Ky (23)
where ' and is defined by (14). T being a complicated function, (23) can only be
solved by a search algorithm. Figure 4 plots u., as obtained by solving (23), vs. ¢ for
different values of p. The curves can be explained by interpreting the mixed-Gaussian
PDF as one arising from a nominally Gaussian noise contaminated by a high variance
Gaussian process. A small value of ¢ implies little contamination by the high variance
population and therefore the limiter can allow for reasonably large values of u, and
hence a large u, results. On the other hand as ¢ increases, increased interference from
the high variance population is compensated for by making the threshold u. smaller
so as not to allow large values of u, suppress the information contained in the other
terms. Figure 5 plots u. vs. p for different values of ¢. It shows that the threshold
is minimum for p & 10. If p is large, the contaminating population would introduce
very large spikes and therefore a high threshold would suffice to suppress them. For
a smaller ratio of 6} to 0} a smaller threshold is necessary. When o2 and ¢ are of
the same order (p < 10), it becomes difficult to distinguish between contributions from
the two populations and therefore most of the terms should be equally weighted, which
is accomplished by causing the threshold to be large, as can be verified from Figure
5. An interesting special case is p = 1 when the mixed-Gaussian PDF degenerates to
a Gaussian PDF (['(un) = 1/0% for all 03). The threshold goes to co and all the
terms are equally weighted. Once the threshold is calculated, the most appropriate .
for a given € and p can be found by a least squares curve fitting method. Specifically,

a suitable range of u (where I'(u) is significantly positive) is divided in 1000 equally
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spaced points. The sum of (T'(u) — ['(u))? evaluated at these points is then minimized
with respect to 3. Figure 6 plots 3 vs. ¢ for different values of p. It shows that a sharp
cutoff (s.e., a high value of ) is necessary only when the contaminating process has
high power and it appears very rarely (large p and small ).

A typical approximation of I'(u) by f(u) has been plotted in Figure 7. Both the
functions are plotted vs. u in the same scale. 0% =1, p = 100 and € = 0.1 were
assumed. The corresponding threshold u. was 3.0224 and the most suitable B was
9.422. K; = 0.979 and K, = 0.01 were obtained from (22). The approximation appers

to be reasonably accurate. In general, accuracy of the approximation will depend on

the values of p and e.

V. The case of unknown PDF parameters

It was assumed for the weighted LS estimator described in section III that O, the
vector of noise PDF parameters was known. This was necessary to in order to determine
the weighting function to be used in (21). If it is partially or completely unknown, it
has to be estimated. This will undoubtedly degrade the performance of the estimator.
It will be shown in the next section that when the PDF parameters are known, the
estimator performance of the weighted LS estimator proposed nearly attains the CR
bound. Alternately, the performance is as good as the MLE. Hence for the purpose of
discussion the weighted LS estimator can be considered to be asymptotically efficient
when the PDF parameters are known so that T' is known. It is thus of interest to
determine the sensitivity of this performance to changes in I' due to estimation errors
in the unknown PDF parameters. One way of quantifying this is to determine the
efficiency of the corresponding AR filter parameter estimator as the PDF parameters
vary from the true values assumed for I'. The problem is now examined from the
viewpoint of robust M-estimators [Martin 1979], [Martin and Yohai 1984].

The original set of non-linear equations (6) to be solved for the MLE (which are

14



approximated by a set of linear equations in the weighted LS method) can be written

as
N p
Z zn—j¢(xn + Zaixn—t) = 0, J' fend 1, 2’ T -p (24)
n=p+1 =1

where @(un) = unl'(tn) = —f'(un;©)/f(tn;© is an odd function. If [(up) is as -
defined in (5) with the true PDF parameters then the solution of (24), if it exists and
is the unique maximum of the likelihood function, is the MLE of a (assuming known
PDF parameters). If I'(u,) is replaced by a different limiter curve I (un), the resulting
estimator is termed an M-estimator [Huber 1981]. When the true PDF is not perfectly
known, ¢ (or I) has to be selected on the basis of other considerations, e.g., making
the estimator performance less sensitive to the PDF. The performance of an estimator
so designed is not as good as the MLE (which is based on the perfect knowledge of
the PDF), but assuming I is well choseri its performance does not deteriorate much if
the actual PDF is somewhat different from the PDF which produces best performance
for a particular selection of ¢. Such an estimator exhibits efficiency robustness if the
performance is evaluated in terms of asymptotic efficiency. The asymptotic efficiency
of an estimator of a can be quantified by [Anderson 1971]

det I (a)] ’ (25)

EFF(4,f) = [det_V(a)

where I,,(a) is the information matrix for a and V(4) is the asymptotic covariance
matrix of 4. It can be shown that 0 < EFF(4, f) < 1 and the upper bound is reached
if and only if V(4) = I;;'(a). In the case of M-estimates, assuming the PDF f is
symmetric, (25) reduces to [Martin 1979)

_ [El#))”
IE[$7]

o-5{()]
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EFF(4,/) (26)

where



The asymptotic efficiency given by (26) depends on how well the function ¢ matches
the optimal one for a given PDF f. It attains the upper bound of unity if only if
¢ = —f'/f or alternately (24) represents the MLE equations.

For a Gaussian M-estimator (which assumes the underlying PDF to be Gaussian
with zero mean and variance o2 for the purpose of choosing #) ¢=—f/f=u,/o2
Therefore the estimator reduces to a LS estimator. In this case, assuming the true PDF

to be f, (26) implies
. il
o2

It is known [Sengupta and Kay 1986] that for all symmetric PDF’s o2] ¢ > 1 with the

EFF(a, f) (28)

equality holding only for the Gaussian PDF. Therefore for all symmetric non-Gaussian
PDF’s efficiency of the LS estimator is less than unity. In fact the LS estimator is
known to be severely lacking in efficiency robustness, as verified by Figures 8, 9, 10
and 11 which plot the asymptotic efficiency of the LS estimator given by (28) for the
three non-Gaussian PDF’s described in Section II. A small deviation from Gaussianity
is observed to produce a large drop in asymptotic efficiency. For example, in the
case of a mixed-Gaussian PDF, it can be observed from Figure 8 that p = 100 and
€ = 0.1 results in a drop by a factor of 10 in the asymptotic efficiency from the value
at € = 0 (which corresponds to a Gaussian PDF). Figure 9, which plots the asymptotic -
efficiency of the LS estimator for a mixed-Gaussian process vs. p for different values
of ¢, shows that the estimator loses efficiency for moderately large values of p, even
when ¢ is reasonably small. In the cases of Middleton’s class A and Johnson’s families
Gaussianity corresponds to large values of B and t, respectively. In both cases the
asymptotic efficiency of the LS estimator drops substantially when these parameters
are smaller (see Figures 10 and 11).

It is expected that a wiser choice of ¢ (or I') in (24) would result in a better
M-estimator. If the PDF parameters (©) were known, the choice I' = —f Juf or a

suitable approximation I' thereof would have been optimal. Since these parameters
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are unknown, a selection of I' which is quite appropriate for one value of ® may not

be suitable for other values of it. If such a mismatch does not reduce the asymptotic

efficiency substantially, the corresponding M-estimator would be considered insensitive

to small variations in the PDF parameters. This will be examined by plotting the

asymptotic efficiency of a nominal M-estimator as the true PDF parameter values vary

from the values for which the chosen estimator is optimal. The weighted LS estimator

proposed in section III may be viewed as an M-estimator where un (the argument of
f‘) is replaced by a preliminary estimate ©,,. Therefore the asymptotic performance -
(in terms of efficiency) of the M-estimators, which will now be described, should be a

good indication of the sensitivity of the weighted LS estimator to changes in ' due to

estimation errors in unknown PDF parameters.

Figure 12 plots the asymptotic efficiency of a typical M-estimator for different
mixed-Gaussian PDF’s. A fixed limiter curve with u, = 3, 8 =10, K, = 0.98 and
K; = 0.01 is used. In this case

0.98u,,

$(un) = unl(un) = ——"— 1 0.01u, (29)

n
1+3

0% is assumed to be unity and the asymptotic efficiency (calculated from (26) and (29)

by numerical integration) is plotted vs. e for different values of p. The curve corre-
sponding to p = 100 exhibits a maximum (efficiency ~ 1) at € = 0.1 demonstrating that
a mixed-Gaussian PDF with € = 0.1 and p = 100 is most suitable for this M-estimator.
In fact, these values of € and p were actually used to determine I as described in Section
IV and resulted in (29). For values of € from 0 to 0.5 its asymptotic performance is
reasonably good. The asymptotic efficiency is 0.98 at ¢ = 0 (¢.e., the PDF is Gaussian)
and 0.90 at € = 0.5. Therefore for a truly Gaussian PDF this estimator will be 98% as
efficient as a LS estimator (which has efficiency of one for a Gaussian PDF). This can
be thought of as a 2% premium [Martin 1979) for a 90% protection or coverage against

up to 50% outliers. Figure 13 plots the asymptotic efficiency of the same estimator vs.
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p for different values of €. It shows that although this particular choice of ¢ is most
suitable for € = 0.1 and p = 100, the asymptotic efficiency is more than 90% up to

p = 10000 for values of € less than 0.1. Improvement over the curves of Figure 9 is

quite apparent.

€ and p were assumed to be known in the derivation of the weighted LS estimator.
Figures 12 and 13 show that the asymptotic efficiency of the corresponding M-estimator
is rather insensitive to these parameters. Assuming that the result extends to the
weighted LS estimator, it implies that when these parameters are not known, they can
be approximated by crude estimates for the purpose of selecting T' in step III of the
suggested estimation procedure. To be more precise, the parameters of I' (namely, u.,
B, K1 and K3) can be stored in a table as functions of the unknown PDF parameters
and the proper values can be chosen by interpolation from these tables. Hardware
memories can be used for this purpose for on-line estimation. The resulting estimator
will be adaptive in nature because it would select a limiter curve depending on a crude
estimate of the unknown PDF parameters. This result adds flexibility to the method
and also creates a possibility of estimating the unknown PDF parameters more precisely

once the AR filter parameters are estimated accurately.

The mixed-Gaussian PDF is not the only PDF which provides such an opportunity.
Figures 14 and 15, which plot the asymptotic efficiency of the M-estimator (calculated
with a typical selection of I in each case) for Middleton’s class A and Johnson families,
suggest the existence of similar results in the cases of other non-Gaussian PDF’s. The -
parameters of I chosen for Figure 13 were u. = 1.8, 8 = 7, K; = 0.955 and K, = 0.045,
which are quite suitable for Middleton’s class A PDF with A = 0.05 and B = 1.0. For
smaller values of B the M-estimator shows marked improvement over the LS estimator
(compare Figure 10). The parameters of T' for the Johnson’s family were chosen to
be u. = 1.4, f = 2, K; = 0.98 and K; = 0.02. These are suitable for Johnson’s
PDF with ¢ = 1.5. A comparison of Figures 11 and 15 reveals that the M-estimator
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does not lose efficiency as fast as the LS estimator as t becomes smaller (s.e. the
PDF becomes more non-Gatussian). These are instances of the M-estimator being
insensitive to small variations in some of the PDF parameters. It is not clear how
well these results apply to the weighted LS estimator, and hence its improvement over
the LS estimator may be somewhat less than what the curves show. The central
argument is that the proposed estimator improves the efficiency robustness of the LS
estimator by weighting the squared terms, and it also reduces computation over the
M-estimator by appraximating the argument of I'. Its ability to handle the case of
unknown PDF parameters makes it more attractive in practice than an M-estimator
which requires the solution of non-linear equations. The following' section presents the
results of computer simulations which justify the approximations made in deriving the .

weighted LS estimator.

V1. Simulation of the performance of the weighted LS estimator

Two typical AR(4) processes [Kay 1986 was chosen for computer simulations. The
parameters are given in Table A. Process I is broadband while process II is narrowband.
The underlying PDF is assumed to be mixed-Gaussian with 0% =1 and p = 100. The
mixture parameter is € = 0.1. The AR process was generated by passing a white mixed-
Gaussian process through a filter, allowing sufficient time for the transients to decay.
The white process was generated by randomly selecting from two mutually independent
white Gaussian processes with PDF’s Eg and Ey (having variances 0% and 0% = po3
respectively) on the basis of a series of Bernoulli trials with probability of success e.
Thus a random variable could be expected to come from the background population for
(1-€) fraction of times and from the contaminating population for € fraction of times.
In accordance with the discussion in the previous section one of the PDF parameters,

namely €, was assumed to be unknown. ¢ is linearly related to the overall variance o2

19



of the PDF,

o? = a}[(1 - €) + €p)] (30a)
€= ;:—1 [-g% - 1] (30b)

It was suggested in the previous section that a crude estimator of € can be used to
select the proper weighting curve. In this case the driving noise power, i.e., 02 was
estimated along with a in the first step of unweighted LS estimation using covariance
method (see (8)) and e was calculated from this estimate using (30b).

Table B shows the sample means and sample variances of the AR filter parameter
estimators obtained by the exact evaluation of the appraximate MLE. The MLE is
found by the four-dimensional optimization (for the four AR filter parameters) of the
conditional likelihood function as reported in [Sengupta and Kay 1986]. A Newton-
Raphson iterative procedure was used for this purpose, with initial conditions obtained
from a preliminary stage of least squares estimation, namely, the Forward-backward
method [Kay 1986]. The value of ¢ used in (6) was as obtained from o? in the first stage
of LS estimation. 1000 data points were used and the result is based on 500 experiments.
The results, as summarized in Table D, can be compared to the performance of the
Forward-Backward estimator (see Table C) and the CR bound. The MLE achieves
the CR bound while the variances of the Forward-Backward estimators are larger by
a factor of 10. This agrees with the theoretical prediction of previous section, as the
asymptotic efficiency of an LS estimator, given in this case by (28), is 0.106 ~ 1/10.
Table D reports the performance of the weighted LS estimator. The loss of performance

is only marginal, as is verified by comparing it to the performance of the exact MLE.

Evaluation of the exact MLE is not only computationally intensive, but it also

suffers from convergence problems. For 1000 data points 1% of the experiments failed
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to converge. For short data records (e.g., N < 250) it almost never converges. However
the weighted LS does not suffer from this problem. The performance of the unweighted
and weighted LS estimators for N = 100 is summarized in Tables E and F, respectively,
along with the CR bound. The unweighted LS (Forward-Backward) estimator continues
to be off from the CR bound by a factor of 10 for Process I. The offset increases to
a factor of 15 for Process II. The weighted LS suffers from a slight degradation of
performance: it is off from the CR bound by a factor of 2 for Process I and by a
factor of 2.5 for Process II. This is probably due to the increased inaccuracy of the
simplifying approximations for shorter data records. It still exhibits improvement over
the Forward-Backward estimator. It is also seen to have less bias as compared to the

Forward-Backward estimator in all cases.

VII. Conclusions

The weighted LS estimator proposed in this paper yields accurate estimates of
the parameters of an AR process excited by non-Gaussian white noise. The method
utilizes the partial information available about the noise PDF (principally the form of
the PDF to within a set of unknown parameters) and should thereby outperform the
so-called robust estimators. It also reduces computation by avoiding solution of non-
linear equations required by the MLE or a robust estimator. Computer simulations
have justified the assumptions made in determining the estimator. The new technique
does not suffer from convergence problems, and exhibits only a slight departure in
performance from the CR bound for short data records. The weighted LS estimator for
the AR filter parameters can be used in conjunction with other estimation techniques
directed towards assessment of unknown PDF parameters. In some situations it may
tolerate a reasonable inaccuracy in the estimation of these parameters and yet produce

an accurate estimate of the AR filter parameters.
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Table A: Parameters of the AR processes used for simulation

Process a as as aq poles
0.7exp|(y27(0.12)]
I -1. . -0. . .
1.352 1.338 0.662 0.240 0.7exp[]21r(0.21)]
' 0.98 exp[527(0.11)]
I -2. . -2. . )
2.760 3.809 2.654 0.924 0.98 exp[]27r(0.14)]
Table B: Performance of the MLE, N = 1000
True Sample Sample Cramer-Rao
.2
value mean Bias variance bound
. ay -1.352 —-1.3527 4.900 x 10~7 1.0221 x 10—+ 1.0491 x 10~4
Process aj 1.338 1.3391 1.210 x 10—¢ 2.4601 x 104 2.5961 x 10—+
I as -0.662 —0.6630 1.000 x 10~¢ 2.4251 x 104 2.5961 x 10—
aq 0.240 0.2404 1.600 x 10~7 1.1035 x 10~ 4 1.0491 x 10—4
a —2.760 -2.7597 9.000 x 108 1.7445 x 105 1.6278 x 10~%
Process a2 3.809 3.8081 8.100 x 10-7 9.0097 x 10™5 8.0163 x 105
I as —2.654 | —2.6530 | 1.000x 10~ 9.1303 x 10~8 8.0163 x 10~°
aq 0.924 0.9236 | 1.600x 107 1.8496 x 10~5 1.6278 x 10~5
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Figure 1(a) The weighting curve for Mixed-Gaussian PDF
for different €'s



Table C: Performance of the Forward-Backward Estimator, N = 1000

True Sample Sample Cramer-Rao
.2

value mean Bias variance bound
ay —1.352 —1.3482 1.444 x 107° 1.0197 x 10~3 1.0491 x 104
Process az 1.338 1.3326 2.916 x 10~% 2.3822 x 10~° 2.5961 x 10~*
I as -0.662 —0.6591 8.410 x 10~8 2.3531 x 103 2.5961 x 10—+
ay 0.240 0.2382 3.240 x 104 9.6246 x 104 1.0491 x 10—4
ay -2.760 —-2.7567 1.089 x 10~6 1.6569 x 10~4 1.6278 x 105
Process as 3.809 3.8001 7.921x 105 8.3418 x 104 8.0163 x 10~%
1I as —2.654 —2.6447 8.649 x 105 8.4388 x 104 8.0163 x 10~5
a4 0.924 0.9197 1.849 x 10~% 1.7083 x 104 1.6278 x 108

Table D: Performance of the Weighted LS Estimator, N = 1000

True Sample Sample Cramer-Rao
s 2
value mean Bias variance bound

ay —1.352 —1.3525 2.500 x 10~7 1.1169 x 104 1.0491 x 10~4

Process as 1.338 1.3388 6.400 x 10~7 2.6466 x 10~* 2.5961 x 104
I as -0.662 —0.8628 6.400 x 10~7 2.6389 x 10—4 2.5961 x 10—+
a4 0.240 0.2402 4,000 x 10~8 1.1049 x 104 1.0491 x 10~4

a; —2.760 -2.7595 2.500 x 10~7 1.9003 x 10~8 1.6278 x 10~5

Process agz 3.809 3.8075 2.250 x 10—8 9.8729 x 10~°% 8.0163 x 105
I as —2.654 —2.6524 2.560 x 10~ 1.0043 x 10—4 8.0163 x 105
a4 0.924 0.9233 4,900 x 10~7 2.0422 x 10~% 1.6278 x 105




Table E: Performance of the Forward-Backward Estimator, N = 100

True Sample Sample Cramer-Rao
s .2

value mean Bias variance bound
a1 —1.352 —1.3328 3.686 x 10~4 9.7580 x 10~3 1.0491 x 103
Process as 1.338 1.3095 8.123 x 10~4 2.1536 x 10~2 2.5961 x 10~3
I a3 ~0.662 —0.6383 5.617 x 10~4 2.0595 x 10~2 2.5961 x 10~3
a4 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>